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A family of groups generalising the Poincare group and 
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Received 4 March 1983, in final form 25 April 1983 

Abstract. A family of groups P'"."' parametrised by non-negative integers m > n is studied 
generalising the PoincarC group P".'), The action of finite-dimensional irreducible real 
representations of SL(2, C) is used to form semi-direct products R 3SL(2,  C). We define 
the complete list of unitary irreducible representations for each P'"."' by finding all 
subgroups of SL(2, C) which are little groups; some of the subgroups do not occur in the 
Poincare group. The geometry of the SL(2, C) action and the classification of SL(2, C) 
invariant tensors is considered. These groups are appropriate symmetry groups for field 
theories in higher dimensions and generalise the notion of elementary relativistic quantum 
systems. 

1. introduction 

We shall be guided by the idea that irreducible unitary representations of a physical 
transformation group can be interpreted as elementary quantum systems. In particular, 
since Wigner's classic work (Wigner 1930), relativistic elementary particles are defined 
by the unitary irreducible representations of the PoincarC group in which the Lorentz 
group, L, acts on the four-dimensional momentum space via its irreducible vector 
representation R"'" = A. The structure of an elementary system is understood in 
terms of the inducing structure of the associated representation. The type of particle 
is determined by the particular subgroup of L, which serves as the little group for 
induction, since the internal quantum numbers are defined by the representations of 
that little group. It is well known that only three non-trivial subgroups of the Lorentz 
group occur as little groups: S 0 ( 3 ) ,  SO(2, 1) and E2. The corresponding relativistic 
elementary systems are massive particles with the spin internal degrees of freedom, 
massless particle with helicity or 'continuous spin', and imaginary mass particles with 
an internal quantum number having infinitely many values. 

The first two are identified with real elementary particles, while the last one may 
be used in describing the virtual exchange of a negative energy momentum squared. 
But there is more structure in the Lorentz group not accounted €or in this picture. 
This suggests that perhaps another group containing the Lorentz group, but with 
more parameters than the PoincarC group, would describe a larger set of elementary 
systems. A simple way to generalise from the PoincarC group is to keep the Lorentz 
group, but allow it to act irreducibly on vector spaces of higher dimension than four. 
Physically this may be interpreted as attributing to 'space-time' more dimensions 
than four, the four dimensions we perceive being a collapse or projection of these. 
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W e  make more remarks about the physical significance of these generalisations at 
the end of this section and at the end of the paper. 

The square of the four-momentum distinguishes among the three types of particles 
defined by the PoincarC group. Its value is determined by the unique generating 
invariant tensor under the R"." action of L, namely the metric tensor. By corrtrast, 
in our generalised groups we find a variety of generating sets of invariant tensors. If 
one considers the metric as a polynomial, p ,  on the four-dimensional Minkowski space 
then the dimension of the level surfaces, the set of four-vectors, U, such that p ( u )  = k ,  
for some constant k ,  is three. The dimension of the various non-trivial orbits is also 
three. In general the dimension of an orbit under any Lorentz group action is six, 
the number of parameters of the group, minus the number of parameters of the little 
group associated with that orbit. All the non-trivial orbits under L in the PoincarC 
group have dimension 3 = 6 - 3 since all the non-trivial subgroups have three para- 
meters. Because of this, the single invariant polynomial defined by the metric tensor 
can classify the orbits with its level surfaces, since they foliate the four-dimensional 
space to three-dimensional surfaces. In contrast with this, in our generalised groups 
we have found a number of new subgroups occuring as little groups which have one, 
two and three parameters implying orbits of five, four, and three dimensions all in 
the same space. 

We generalise the PoincarC group by using other irreducible finite-dimensional 
Lorentz group actions R(m.") than the four-dimensional defining one, R",". We denote 
the generalised group having the action R("',") by P"."'. So P"*" is the PoincarC 
group. We view the abstract Lorenz group as the physical relativistic transformation 
group for 'space-time'. We consider 'space-times' of arbitrary finite dimensions on 
which the Lorentz group acts irreducibly. (The physical meaning of these various 
dimensions we leave undetermined, hoping to find it through the group action.), We 
approach the study of the groups P","' with the desire to encompass more generalised 
quantum systems. We find among the irreducible unitary representations of this family 
of groups some subgroups of the Lorentz group not occurring as little groups for 
representations of the PoincarC group. 

The dimension of the vector space in Pcm,"' is N = (m + l ) ( n  + 1). We can use the 
group to give physical meaning to a given vector either by finding its little group, thus 
using an algebraic property, or by studying the orbit it lies in under the group action 
and the values of a generating set of invariant polynomials on that orbit, a geometric 
property. The algebraic correspondence between a direction in a carrier space and 
the subgroup of L which fixes a vector in that direction we classify completely. These 
results alone we find are inadequate for determining the physical significance of 
dimensions in our generalised 'space-times'. We initiate the study of orbit geometries 
by beginning a classification of invariant polynomials. 

As we shall see, the groups which are the most direct generalisations of the PoincarC 
group have non-trivial orbits of dimension three, four and five all in the same space. 
This contrasts sharply with the PoincarC group where all non-trivial orbits are three 
dimensional. We know that an invariant polynomial must be constant on any orbit, 
Thus an orbit must be contained in a level surface of every invariant polynomial, i.e. 
the surface defined as the set of all points where that polynomial has a fixed value. 
We do not know the extent to which an orbit can be determined by intersecting level 
surfaces of invariant polynomials. This in itself is an interesting apparently unsolved 
problem related to Hilbert's fourteenth problem: is the ring of polynomials which are 
invariant under a given matrix group finitely generated? in our case there will be a 
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finite set generating all polynomials under our matrix group defined by R(msn)  (Fogarty 
1969). We do not know whether an orbit under a given group can be defined by 
intersecting level surfaces of invariant polynomials chosen from a generating set. The 
fact that there are a variety of dimensions for the orbits of the group suggests a very 
complex, rich structure. 

Our generalised groups relate to other work in various ways. In the theories of 
asymptotically flat spaces the Bondi-Metzner-Sachs group (McCarthy 1972, 1973, 
1975, 1978, Piard 1977) has been found useful in which there are an infinite number 
of supermomenta and the Lorentz group acts irreducibly on these. Our groups Pcm."' 
lie between the extremes of the PoincarC group and the BMS group. A simple reducible 
case where SL(2, C) acts on the relativisitic phase-spaces of two four-vectors x, and 
p F  via the direct product A x A has been investigated by Piron (1979). We are interested 
in more general phase spaces, namely the carrier spaces of the various irreducible 

. Among other applications might be an interacting particle theory in which the 
momenta of two or more particles are transformed together under a irreducible 
representation R'""'. Recently there is renewed interest in field theories in higher- 
dimensional spaces following the ideas of the Kaluza-Klein theory in five dimensions 
(Salam and Strathdee 1982, Cremmer and Julia 1979). These theories have higher- 
dimensional translations, and when reduced to the Minkowski space they give rise to 
additional particles or degrees of freedom, just as in our case, as we will see, we get 
additional four-vectors when the little groups are considered acting in Minkowski 
space. 

R ( m . n  I 

2. Definition of the generalised Poincare groups 

The general analytic finite-dimensional irreducible complex representation RIm3") of 
SL(2, C) can be realised as acting in the ( m  + l ) ( n  + 1) dimensional space of poly- 
nomials, U ( Z ,  f ) ,  in the variables z and f of degree less than or equal to m in z ,  
and less than or equal to n in f as follows (see e.g. Barut and R a g k a  1977): 

In generalising the PoincarC group we want SL(2, C )  to act irreducibly on a real vector 
space. We find that all smooth real representations, R"."', are built out of the above 
complex representations via: 

Theorem. The real analytic irreducible finite-dimensional representations, R(m.n) of 
SL(2, C) are all either equivalent to R'm*m) for some m, or to T(m7n)@ T(n*m) for some 
m and n, m # n.  In particular, a representation T " ' " l O T ' n * m ) ,  m f n ,  of SL(2, C )  is 
equivalent to the representation obtained from making T(m*n)  real by doubling the 
dimension. 

To prove this we first show that if m Z n ,  T (m ,  n )  cannot be equivalent to a real 
representation. This is done by showing there always must be some matrix element 
with an imaginary component. Next we show that if TcmS"'@D is equivalent to a real 
representation then T(n*m' c D, and that T(m*n)CD T("*ml is real irreducible and 
equivalent to making T'm.nl real by doubling the dimensions. The latter is done by 
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defining an automorphism of the Lie algebra which makes the action on the vector 
space real. Finally we define a similar automorphism on the Lie algebra to T(m*m) 
(see also Weiss 1981). 

Using this theorem we know explicitly the matrix elements of the general real 
N-dimensional representation. We define our generalised Poincare group Pcm.n) as 
the semi-direct product of SL(2, C) with R N  via the action R ( m s n )  defined by 

9 i f m Z n  
if m = n. 

T ( m . n )  8 T ( n . m )  

The group action then is 

a E R ,  g E SL(2, C)+ (a ,  g ) ( a ' ,  g ' )  = (a  +RLm9")(a'), g g ' ) .  

We have a different group Pcm3")  for all m a n .  

3. Little groups in the representations of P'"''"' 

We determine the representations of our generalised groups by inducing them from 
the little groups. In the case of the PoincarC group one has a full understanding of 
the orbits of the group action in R4, the dual to Minkowski space. This allows one 
to choose standard vectors, find the little groups of those vectors, and induce rep- 
resentations. Unfortunately it is extremely difficult to analyse the group action in R N  
for an arbitrary N .  In our approach we determine first which subgroups of SL(2, C) 
fix at least one vector in some representation R(m3n) .  Since all the connected subgroups 
of SL(2, C) have been classified (Shaw 1970), we can identify these by taking a 
particular parametrisation of a given subgroup and computing the form a vector must 
have to remain fixed under the action of that subgroup. This method is due to 
McCarthy who developed it for the BMS group (McCarthy 1972, 1973, 1975, 1978, 
Piard 1977). Then we can choose standard vectors and find their little groups. 
Subgroups which have only the trivial connected component can be analysed by 
assuming that at least one element is in Jordan normal form, and computing the 
possible fixed vectors of the subgroup generated by that one element. The results are 
summarised in table 1, showing the list of standard vectors and their little groups. 
The connected component of the identity in a little group is labelled as K ( M j ) ,  K ( N j )  
or K(Ej) ,  meaning it is characterised in Minkowski space as the group which preserves 
a J' -dimensional subspace which is either Minkowski, null or Euclidean respectively. 
If the subgroup is defined as f ix ing  a subspace rather than merely preserving it, the 
subgroup is labelled with a dot: K(*j), K(P?j), K ( k j ) .  Aj-dimensional Minkowski or 
null space is generated by a time-like or null vector, respectively, and ( j  - 1) orthogonal 
space-like vectors. A j-dimensional Euclidean space, of course, is generated by j 
orthogonal space-like vectors. 

We see from table 1 that all little groups except SU(2), EZ, SU(1, 1) and SL(2, C) 
are new compared with the case of the PoincarC group. Only these four little groups 
are characterised as fixing a single vector in the Minkowski space. These groups only 
occur in Pcm3") for m = n ,  namely the groups for which the complex representation 
T(m.n) is already equivalent to a real representation. In these cases, the dimension of 

is an arbitrary square (n +1)  (Fogarty 1969). We see that the PoincarC group p ( m . n )  
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has the smallest dimension, 4 = 22, of any group having these little groups, except the 
trivial case PcoVo) with dimension one. 

There are four other connected subgroups which are connected little groups of at 
least one vector in R N  under some R(m.n)  but are not the full connected component 
of a little group for any vector in the Minkowski space. These new little groups are 
characterised in the Minkowski space as either fixing or preserving a j-dimensional 
subspace. Thus, it is remarkable that these new little groups in R N  lead in the 
Minkowski space to a generalisation of the concept of stability group. 

4. The representations of P'"'") 

The next step is to determine the unitary irreducible representations of the little 
groups, and the resultant 'quantum numbers' generalising the internal quantum num- 
bers spin or helicity. The group PcmSn) are algebraic groups and hence due to a theorem 
of Dixmier (1959) are regular. Thus Mackey's theorem implies that a Bore1 section 
of the orbits exists and every irreducible representation is induced. The representations 
of the little groups are all either well known or easily found by inducing from subgroups 
of the little groups themselves, but with two noteworthy exceptions: (46) and (66). 
Here the connected component of the group is adjoined with the matrix 

generating a group with two connected components. In a unitary representation of 
one of these little groups it turns out that the operator J representing the group 
element g intertwines an irreducible representation of the connected component of 
the identity with its contragradient, thus acting as a metric. Therefore an irreducible 
representation of the group ( 4 6 )  or (66) is a direct sum of an irreducible and its 
contragradient of ( 4 a )  or ( 6 a ) ,  respectively. A complete derivation of the unitary 
representations of the little groups is given elsewhere (Weiss 1981). 

The complete characterisation of the induced representations requires some knowl- 
edge about the orbits of the little group in R N .  The orbits are (6-&dimensional 
manifolds, where I is the dimension of the little group. It is not clear whether they 
can be characterised by the invariant tensors of R ( m 3 n )  generalising the concept of 
'mass-shell' for the PoincarC group. To do so, there would need to be at least N- (6 - l )  
of them. The geometry of these orbits and the theory of invariant tensors of k(m3n! 
is a new, complex and interesting study which we begin in this work. It turns out to 
be sufficient to find the invariant tensors of the complex representations T(m.n) .  This 
is obvious if m = n for then R""' T'"". If m # n ,  R'm3n' is formed from T(msn) by 
separating real and imaginary parts. Now by an invariant tensor we mean a tensor 
product of generators of the vector group R N  which remains invariant under the 
SL(2, C) action. This is equivalent to commuting with the generators of SL(2, C). If 
a tensor commutes with the generator of a given one-parameter group RL"."' it must 
commute with the real and imaginary parts of the generator of TLm*"). Conversely 
for a tensor to commute with TLm."' it must commute with the real and imaginary 
parts separately. It is important to know if a tensor has a symmetric part for we want 
to use them to characterise the orbits. A totally antisymmetric tensor defines a trivial 
polynomial on R .  We have: 
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Theorem. (1) Every T'",") has a second-order invariant (a metric in the orbit space) 
which is symmetric only if (m + n )  is even, otherwise it is totally antisymmetric. 
(2) If ( m  + n )  is even TImqn) has an additional third-order invariant. This is symmetric 
if i (m + n )  is also even. Otherwise it is totally antisymmetric. 

Sketch of the proof. A tensor of degree d may be viewed as an element of the carrier 
space of the tensor product representation of T".') with itself d times. An invariant 
tensor of degree d exists if and only if the tensor product representation contains the 
trivial representation T'o'o'. By analysing the representations T(msfl) in terms of the 
representations of SU(2) we find that 

, for j = Iml- mzl, 11111- m2/ + 2 ,  . . . , ml + m2, T!j.k) T!m,,fl,) 0 TlmZ.f12) 

k=lni-nzl,Ini-nzl+2, . . . ,  nl+n2, 

and each such T",k' is contained exactly once. In order to study the symmetry 
properties of the tensors we derive the Clebsch-Gordan coefficients for tensor products 
of the T'msfl) representations. This is done by writing them, as before, in terms of 
representations of SU(2) they contain. In this way we reduce symmetry properties 
of SL(2, C) tensors to similar properties of SU(2) tensors (Weiss 1981). 

We mentioned before that another approach to this is via the Lie algebra. By 
considering the commutation relations we find that the condition for an invariant 
tensor, that it is in the centre of the enveloping algebra, reduces to a system of linear 
equations given the degree d of the invariant tensor and the particular T(m*n).  Using 
this we may write an algorithm for generating arbitrary invariant tensors. Unfortu- 
nately, the algorithm is limited practically in that the amount of computer memory 
required grows rapidly with the dimension of the space and the degree of the tensor. 
We do find, however, the general form of the metric. Under T'm.n) the contravariant 
tensor 

is invariant. These comments may suggest the difficulty and depth of the problem of 
the determination of the invariants. Yet we expect this study to yield much fruit both 
in that the tensors will shed light on the physics of the higher-dimensional spaces, 
much as the Minkowski metric divides space-time into space-like, light-like and 
time-like directions, and in that the invariant tensors themselves represent absolute 
physical quantities in these spaces such as the speed of light. 

5. An example: P(**') 

An examination of table 1 shows that only the groups Pcm,'' with m = n have the little 
groups S0(3) ,  SO(2 , l )  and E'. From this we might expect only these spaces to have 
time-like, null and space-like directions. The dimensions of these spaces are all squares 
N = ( m  + 1)'. We see that P"." with dimension 4 = 2' has the smallest non-trivial 
dimension in this way. P(292) with dimension nine is, therefore, the most direct 
generalisation of the PoincarC group. From the theorems above we know there are 
symmetric second- and third-order invariant tensors under R('*'), hence there are 
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invariant polynomials of degree two and three. Further, using the computer program 
mentioned above, we found two fourth-degree invariant polynomials independent of 
these. We also found that there is no independent fifth-degree invariant polynomial. 
There was not enough computer memory to investigate sixth-order polynomials. 

We list the invariant polynomials in terms of their action on a vector u = U& (fd: 

2 
p 2 ( u )  = 8 u 2 2 u 0 0 - - 4 u 2 1 u 0 1 +  8 u 2 0 u 0 2  - 4 u l z U 1 0 +  (U111 * 

p 3 ( u )  = u00ullu2z-u01u10u22-u00u12u21 + u 0 2 u 1 0 u z 1  + u 0 1 u 1 2 u 2 0 - u 0 2 u 1 1 u 2 0 ,  

p 4 . l b )  = 1 9 2 u 2 2 u 2 o u o 2 u o o  - 3 2 u 2 2 u 2 0 ( u  1212 - 3 2 ( ~ z 1 ) ~ ~ 0 2 u o o  + 1 6 ( ~ 2 1 ) ~ ( u 0 1 ) ~  

- 32uZ2(u 3 0 ) ~ ~ 0 2  + 1 6 ~ 2 2 ~ i i ~ i o ~ o i  - 3 2 ~ 2 2 ~  1 2 ~  iouoo + 1 6 ~ 2 1 ~ 1 1 ~  iouoz 

- ~ u ~ ~ ( u ~ ~ ) ~ u o ~ +  ~ ~ U ~ ~ U ~ Z U ~ ~ U O O - ~ ~ U ~ O U ~ ~ U ~ O U O Z +  1 6 ~ 2 0 ~ 1 2 ~ 1 1 ~ 0 1  

- 3 2 U z o ( U  i 2 ) 2 U o o - 3 2 U 2 2 U z i U o i U o o  3 2 ( U 2 2 U 0 0 ) ~  - 3 2 U 2 i U 2 o U o z U o i  

+ 3 2 ( u 2 0 u 0 2 ) ~  + 16(u 12u lo)2 - 8u 12(u d 2 u  + (U  1d4, 
2 

~ 4 . 2 ( ~  ) = 48u 2 2 ( u  1 1 ) 2 u o o  - 3 2 ~ 2 2 ~  t1u l o u o l +  l 2 8 u 2 2 ( u  10) uoz - 32uZ1 U 1zu 11 uoo 

+ 9 6 ~ 2 1 ~ 1 2 ~  i o ~ o i  - 3 2 U 2 i ( U i i ) 2 U o i  + 1 2 8 ~ 2 ~ ~  1 1 ~ 1 0 ~ 0 2  + 6 4 ~ 2 0 t u i 2 ) ~ u o o  

- 3 2 ~ 2 0 ~  1 2 u  1 iuoi + 48uzo(u I I ) ~ U O Z  - 1 2 8 ~ 2 2 ~  1 2 u  iouoo - 1 2 8 ~ 2 0 ~  izu 1 0 ~ 0 2  

+ 6 4 u 2 2 u 2 0 ( ~ 0 1 ) ~  -- 1 2 8 u ~ ~ u 2 ~ u o ~ u ~ 0 +  l 2 8 ( u 2 2 u 0 0 ! ~ -  1 2 8 ~ ~ 1 ~ 2 0 ~ 0 2 ~ 0 1  

+ 6 4 ( u 2 1 ~ 2 ~ 0 2 u 0 0 +  l 6 ( ~ 2 1 ~ 0 1 ) ~ +  1 2 8 ~ ~ ~ o u o ~ ~ ~ - 8 ~ i z ~ ~ i ~ ~ ~ ~ i o  

+ 1 6 ( ~ 1 2 ~ i o ) ~ + ( u i i ) ~ .  

This special case P(292’ illustrates some new little groups that arise from these 
generalised groups and suggests physical implications. Going through table 1 one 
finds all four little groups of the PoincarC group P“.” appearing and in addition four 
groups with new connected components (3), (4), (7) and (8); and the discrete group 
Z Z .  Table 2 illustrates this. 

These new little groups may be seen as describing more complex elementary 
systems. P(’*~’ is the Lorentz group acting on a nine-dimensional vector space 

Table 2. New connected little groups in the case P‘2.2). 

Little group H 
(see table 1) 

Characterisation in Minkowski space 
of the connected component of H Fixed vectors in B 

I 
I 

( 7 )  

Linear combinations of the form: 
A(z - f i 2 + B z 2 f 2 .  

fixes a two-dimensional null space 

fixe5 a two-dimensional Minkowski space 

(8) fixes a two-dimensional Euclidian space 

(4) preserves a two-dimensional Minkowski 
space 

Linear combinations of the form: 

Linear combinations of the form: 

Linear combinations of the form: 

Multiples of zf 

A(z - f ) ’ + B ( z  - i ) z i + C z 2 5 2  

A ,  1 + B Z ~  + cz 2 f 2  

~2~ + B Z ~  + cf2 
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analogous to the Lorentz group acting on a four-dimensional space-time in the 
PoincarC group P".'). A little group in P".') describes an elementary system or particle 
according to its fixed vector a particle with a time-like momentum vector is a massive 
particle, one with a null momentum vector must be a photon or neutrino, and a 
particle with a space-like momentum vector is a tachyon. If we take these nine 
dimensions seriously as an alternate dimensionality of reality to the four dimensions 
of space-time we must give these dimensions physical meaning. This should come 
from the action of the group on the space. The geometry of the orbits is difficult to 
see, but the algebraic properties are clear. The fixed vectors of Ez, SU(2) and SU(1, 1 )  
should be null, time-like and space-like directions, respectively, though time and space 
may have somewhat different meanings here. For example, squared lengths of time-like 
and space-like vectors have opposite signs in Minkowski space. One may take from 
table 1 our chosen fixed vectors for SU(2)[(5)K(il?l)] and SU(1, 1)[(6)K(&1)] and 
evaluate the four invariant polynomials mentioned above at the points in the nine- 
dimensional space defined by these vectors. Neither the metric nor either of the two 
fourth-order invariants separate these time-like and space-like vectors. They do differ 
by a sign when evaluated by the third-order invariant. 

There are three little groups which are characterised as fixing a two-dimensional 
subspace of Minkowski space, one for each of the three types: Euclidean, Minkowski 
and null. Each of these is the little group for a three-parameter family of vectors! 
This phenomenon is not seen at all in the PoincarC group. In the Poincare group, 
while isomorphic forms of SU(2) fix all time-like vectors, a given form of SU(2) fixes 
only multiples of a single vector. 

Let us consider the three-parameter family of directions in R9 c P",') whose little 
group is characterised in P",') as fixing a two-dimensional null space generated by a 
light-like and orthogonal space-like vector. Thus, a system with one of these directions 
as its momentum vector in the nine-dimensional space has the group characterised in 
Minkowski space as fixing both a null and space-like direction as the group of all 
motions not affecting its nine-dimensional momentum vector. So this direction is 
associatated with a system characterised by a light-like and a space-like direction. 
Thus we may associate such a direction for example with a plane polarised light wave, 
a wave moving in a specific light-like direction with a particular space-like polarisation. 
A choice of null and space-like directions in the Minkowski space yields a three- 
parameter family of vectors in the nine-dimensional space. This seems to describe 
three different kinds of plane waves. Similarly, the directions with little groups 
characterised in Minkowski space as fixing a two-dimensional Minkowski or null space 
may be associated with plane matter waves or plane tachyon waves, respectively. 

The group (46) which preserves the space generated by a space-like and time-like 
direction presents more of a mystery in that directions are only preserved and not 
fixed. A system whose momentum vector in the nine-dimensional space has (46) as 
its little group would be characterised by a space-like and a time-like direction, but 
in such a way that translation in these directions are symmetries. Such a system might 
be an infinite string, so that boosts in that direction are symmetries, or the complemen- 
tary two-dimensional Euclidean space existing only for an instant. 

Of course other physical interpretations and applications are possible. The Lorentz 
group is a fundamental group in mathematical physics and its action on the space of 
its irreducible representations seems very rich. We expect this study to be relevant 
to a broad range of areas. 
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